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Introduction to Remap
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Remap = Constrained Interpolation

Given: Discrete representation fh
A of function f on mesh A.

Find: Accurate discrete representation fh
B of f on mesh B,

subject to physical constraints:

conservation of mass, energy, etc.

preservation of monotonicity

physically meaningful ranges for variables:
density ≥ 0, concentration ∈ [0, 1]

Uses: transport algorithms, mesh rezone/repair, mesh tying.

One flavor: Incremental remap → Mesh A is “close to” mesh B.

Arbitrary Lagrangian-Eulerian (ALE) and Particle-In-Cell (PIC)
methods depend on robust remap algorithms.

Challenge: Competing objectives and constraints!

,
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Motivation for Optimization-Based Remap (OBR)

balancing of desired mathematical features and physical constraints:
accuracy vs. mass conservation, monotonicity, bounds on variables

generality with respect to discretization: applicable to finite element,
finite volume and finite difference schemes as well as particle
methods; suitable for arbitrary polyhedral grids!

Liska, Shashkov, et al., in “Optimization-Based Synchronized
Flux-Corrected Remap” (J. Comp. Phys. 2010) pursue a local
optimization approach.

We have developed a new mathematical framework for the
solution of incremental remap problems, based on a globally
constrained optimization strategy.

,
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Motivation for Optimization-Based Remap (OBR)

balancing of desired mathematical features and physical constraints:
accuracy vs. mass conservation, monotonicity, bounds on variables

generality with respect to discretization: applicable to finite element,
finite volume and finite difference schemes as well as particle
methods; suitable for arbitrary polyhedral grids!

Liska, Shashkov, et al., in “Optimization-Based Synchronized
Flux-Corrected Remap” (J. Comp. Phys. 2010) pursue a local
optimization approach.

We have developed a new mathematical framework for the
solution of incremental remap problems, based on a globally
constrained optimization strategy.

We show that the global optimization formulation can have
significant theoretical and practical advantages, at little or no

added computational cost!
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Problem Setup for Incremental Remap
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Notation:

κi – cell in old grid, eκi – cell in new grid; K is the number of cells

N(κi ) – neighborhood of κi in old grid; I(N(κi )) – neighbor indices

locality assumption: eκi ⊂ N(κi ) for all i = 1, . . . ,K

mean values of density on old mesh: ρi =
R
κi
ρ(x)dV /V (κi )

masses: mi =
R
κi
ρ(x)dV or mi = ρiV (κi ); total mass M =

PK
i=1 mi

trivial observation: ρmin
i ≤ ρi ≤ ρmax

i ⇔ ρmin
i V (κi ) ≤ mi ≤ ρmax

i V (κi ),

where ρmin
i and ρmax

i are the neighborhood minima and maxima

,
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Problem Statement: Remap of Mass-Density

Given mean density values ρi on the old grid cells κi , find
representations m̃i for the masses on the new grid cells κ̃i ,

m̃i ≈ m̃ex
i =

∫
eκi

ρ(x)dV ; i = 1, ...,K ,

subject to the following requirements:

Mass conservation:
∑K

i=1 m̃i =
∑K

i=1 mi = M .

‘Accuracy’: For a globally linear density ρ(x), the remapped masses
are exact in the following sense:

m̃i = m̃ex
i =

∫
eκi

ρ(x)dV ; i = 1, . . . ,K .

Preservation of local bounds (implies monotonicity):

ρmin
i ≤ ρ̃i ≤ ρmax

i i.e. ρmin
i V (κ̃i ) = m̃min

i ≤ m̃i ≤ m̃max
i = ρmax

i V (κ̃i ) .
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Formulation of OBR
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Optimization-Based Remap

Express new masses via flux exchanges between old and new cells:

m̃ex
i = mi +

∑
j∈I(N(κi ))

F ex
ij ,

where F ex
ij =

∫
eκi∩κj

ρ(x)dV −
∫
κi∩eκj

ρ(x)dV .

Exact mass fluxes are antisymmetric: F ex
ij = −F ex

ji → Fij = −Fji

Using these fluxes yields the approximation of the new cell masses

m̃i = mi +
∑

j∈I(N(κi ))

Fij ⇒ mass conservation

Assume that for every old cell κi there is a density reconstruction ρH
i

that is exact for linear functions. Define target fluxes according to

F H
ij =

∫
eκi∩κj

ρH
i (x)dV −

∫
κi∩eκj

ρH
i (x)dV .
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Optimization-Based Remap

Reconcile preservation of linearity, mass and local bounds:

min
Fij

K∑
i=1

∑
j∈I(N(κi ))

(Fij − F H
ij )2 subject to

Fij = −Fji i = 1, . . . ,K , j ∈ I(N(κi ))

m̃min
i ≤ mi +

∑
j∈I(N(κi ))

Fij ≤ m̃max
i i = 1, . . . ,K .

Enforce antisymmetry constraint by using only Fpq with p < q:

min
Fij

K∑
i=1

∑
j∈I(N(κi ))

i<j

(Fij − F H
ij )2 subject to

m̃min
i ≤ mi +

∑
j∈I(N(κi ))

i<j

Fij −
∑

j∈I(N(κi ))
i>j

Fji ≤ m̃max
i i = 1, . . . ,K .
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Optimization-Based Remap
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A Taste of OBR
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Theoretical Properties of OBR
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Immediate Properties

min
Fij

KX
i=1

X
j∈I(N(κi ))

i<j

(Fij − FH
ij )2 subject to

emmin
i ≤ mi +

X
j∈I(N(κi ))

i<j

Fij −
X

j∈I(N(κi ))
i>j

Fji ≤ emmax
i i = 1, . . . ,K .

Convex quadratic program.

Bound preservation (monotonicity) is explicit as long as the
feasible set defined by the inequalities is nonempty.
Theorem. The feasible set of OBR is nonempty.

Optimally accurate with respect to a set norm and a set target flux.
Independent of dimension, cell topology and discretization.
Separation of accuracy and monotonicity!
Permits additional physical bounds.
Extendible to compatible remap of systems.

Mathematically “clean” formulation: No flux limiting!

,
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Linearity Preservation

Theorem. A sufficient condition for OBR to recover linear densities
exactly is that the centroid of any new cell remain in the convex
hull of the centroids of its old neighbors.

(a) original (b) admissible (c) inadmissible

For example, less restrictive than Van Leer limiting (B. Swartz,
“Good Neighborhoods for Multidimensional Van Leer Limiting”,
JCP, 1999, 154:237-241).

,
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Connection with Flux-Corrected Remap (FCR)

Theorem. FCR can be formulated as a global optimization problem.

(1) The FCR cost function is equivalent to the OBR cost function.

(2) The FCR feasible set is always a subset of the OBR feasible set.

OBR

min
aij

KX
i=1

X
j∈I(N(κi ))

i<j

(1− aij )
2(dFij )

2 subject to

eQmin
i ≤

X
j∈I(E(eκi ))

i<j

aijdFij −
X

j∈I(E(eκi ))
i>j

ajidFji ≤ eQmax
i

Admits a larger feasible set!

FCR

min
aij

KX
i=1

X
j∈I(N(κi ))

i<j

(1− aij )
2(dFij )

2 subject to

(a)

(
D−i dFij ≤ aijdFij ≤ 0 for i < j, dFij ≤ 0

D−i dFji ≥ ajidFji ≥ 0 for i > j, dFji ≥ 0

(b)

(
0 ≤ aijdFij ≤ D+

i dFij for i < j, dFij ≥ 0

0 ≥ ajidFji ≥ D+
i dFji for i > j, dFji ≤ 0

,
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Algorithms

,
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The Swept-Region Approximation

OBR (and FCR) can be implemented using exact cell intersections.
In 1D, we use exact cell intersections.
In 2D, in order to avoid expensive geometric computations, we use
the concept of swept regions (Margolin, Shashkov, JCP 2002).
OBR: The swept-region flux approximation of F H

ij is exact for linears.

FCR: Blends F H
ij and a monotone (provided exact cell intersections!)

low-order reconstruction F L
ij . Problem: The swept-region apprx. of

F L
ij is monotone only under additional assumptions on mesh motion.

Margolin, Shashkov

,
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Optimization Techniques

Primal OBR quadratic program:8><>:
min
~F

1

2
(~F − ~FH)T(~F − ~FH) subject to

~bmin ≤ A~F ≤ ~bmax
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Dual OBR quadratic program:8>><>>:
min
~λ,~µ

1

2

“
AT~λ− AT~µ

”T “
AT~λ− AT~µ

”
− ~λT

“
~bmin − A~FH

”
− ~µT

“
−~bmax + A~FH

”
subject to ~λ ≥ 0, ~µ ≥ 0

Strong duality, etc. imply ~F∗ = AT~λ∗ − AT~µ∗ + ~FH .

Use reflective Newton method by Coleman and Li (SIAM J. Opt. 1996):
Newton iteration applied to a piecewise differentiable system that results
from the first order optimality conditions for the dual problem.

The quadratic term in the dual is governed by a symmetric positive
semidefinite matrix; the computational cost of each Newton iteration is
dominated by the solution of a well-structured sparse symmetric positive
definite linear system (fast Cholesky factorizations) → O(K) algorithm.

,
D. Ridzal Optimization-Based Remap 18



Intro to Remap OBR Formulation OBR Properties Algorithms 3 Examples Computations

Three Instructive Examples

OBR preserves shape when FCR does not.

OBR preserves linear densities when FCR does not.

OBR preserves monotonicity when FCR does not.

,
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OBR preserves shape when FCR does not.

Compressive Mesh Motion
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OBR preserves shape when FCR does not.
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Figure: Level sets of the objective functional and the feasible sets for
∆1 = ∆2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0. The red region

gives the OBR feasible set which contains the point (1, 1). The feasible set of
FCR is given by the solid horizontal segment (black) and does not contain the
point (1, 1). The right pane shows a zoom of the OBR and FCR feasible sets.
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OBR preserves linear densities when FCR does not.

` = 7 ` = 8 ` = 9 ` = 10 ` = 100 ` = 1000

OBR (L2 err) 1.67e-16 0 3.20e-17 3.58e-17 1.63e-16 1.95e-14

FCR (L2 err) 4.53e-17 3.58e-17 2.32e-03 4.46e-03 2.09e-02 2.25e-02

Table: L2 errors in the OBR and FCR remap of a linear density function in one
dimension, for different compression ratios ` : 1 of the middle cell.

,
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OBR preserves monotonicity when FCR does not.
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Figure: A 3×3 uniform initial grid (left pane) and the “compressed” grid (right
pane) with a 4×4-fold compression of the middle cell.
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Figure: Linear density ρ(x , y) = x remapped from the uniform 3× 3 grid to
the compressed “torture” grid with ` = 16. Left to right: the donor-cell
method, FCR, OBR. It is clear that OBR gives the best density approximation.
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Computational Studies

Cyclic grids with small cell displacements.

Cyclic grids with large cell displacements.

Computational cost.

,
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Small cell displacements

OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64×64 320 6.58e-04 4.91e-04 5.78e-03 — — —
128×128 640 8.88e-05 6.16e-05 1.64e-03 2.89 3.00 1.82
256×256 1280 1.21e-05 7.82e-06 4.65e-04 2.88 2.99 1.82
512×512 2560 1.70e-06 9.89e-07 1.39e-04 2.87 2.98 1.80

FCR

64×64 320 7.78e-04 4.95e-04 8.75e-03 — — —
128×128 640 1.22e-04 6.49e-05 2.81e-03 2.67 2.93 1.64
256×256 1280 2.00e-05 8.49e-06 8.89e-04 2.64 2.93 1.65
512×512 2560 3.43e-06 1.08e-06 2.84e-04 2.61 2.95 1.65

Table: OBR and FCR errors and convergence rate estimates for the sine
density using 4 tensor-product cyclic grids. The L2 and L∞ rates for OBR are
slightly better than those for FCR.

,
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Small cell displacements

OBR

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

64×64 320 9.12e-02 2.88e-02 4.72e-01 — — —
128×128 640 7.12e-02 1.75e-02 4.86e-01 0.36 0.72 -0.04
256×256 1280 5.57e-02 1.06e-02 4.87e-01 0.36 0.72 -0.02
512×512 2560 4.33e-02 6.35e-03 4.98e-01 0.36 0.73 -0.02

FCR

64×64 320 8.43e-02 2.45e-02 4.67e-01 — — —
128×128 640 6.57e-02 1.47e-02 4.77e-01 0.36 0.73 -0.03
256×256 1280 5.12e-02 8.87e-03 4.77e-01 0.36 0.73 -0.02
512×512 2560 3.99e-02 5.34e-03 4.88e-01 0.36 0.73 -0.02

Table: OBR and FCR errors and convergence rate estimates for the shock
density using 4 tensor-product cyclic grids. For this classical example, the
convergence rates of OBR and M-OBR (FCR) are virtually identical.
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Large cell displacements

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−→←−−

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: Grid deformation due to local compression (left pane) and the
‘repaired’ uniform grid (right pane).
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Large cell displacements

OBR

#cells #remaps L1 err L2 err L∞ err L1 rate L2 rate L∞ rate

128×128 640 2.69e-04 3.65e-04 2.03e-03 — — —
256×256 1280 6.71e-05 9.08e-05 5.07e-04 2.00 2.01 2.00
512×512 2560 1.68e-05 2.27e-05 1.20e-04 2.00 2.00 2.04
1024×1024 5120 4.19e-06 5.66e-06 2.69e-05 2.00 2.00 2.08

FCR

128×128 640 2.81e-04 3.47e-04 1.23e-03 — — —
256×256 1280 9.23e-05 1.19e-04 5.14e-04 1.61 1.54 1.26
512×512 2560 3.65e-05 5.05e-05 2.50e-04 1.47 1.39 1.15
1024×1024 5120 1.69e-05 2.39e-05 1.24e-04 1.35 1.28 1.10

Table: OBR and FCR errors and convergence rate estimates for the sine
density using 4 cyclic repeated-repair grids. Rates expected of a second-order
scheme are highlighted. It is evident that OBR delivers second-order accuracy,
while FCR exhibits a trend toward a first-order scheme.
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Large cell displacements

R = 213 R = 212 R = 211 R = 155 R = 154 R = 153 R = 100 R = 50

OBR 1.32e-13 1.42e-13 1.60e-13 4.60e-09 4.06e-06 1.53e-05 1.97e-03 6.48e-03

FCR 1.32e-13 5.32e-08 1.10e-06 2.26e-03 2.35e-03 2.44e-03 5.73e+04 8.50e+11

Table: L1 errors in the OBR and FCR remap of a linear density function on the 64×64
tensor-product grid, for different values of the pseudo-time step 1/R. Errors smaller than 1e-8 are
highlighted. OBR fails to preserve linear densities at R = 154, while FCR fails at R = 212,
resulting in a pseudo-time step advantage for OBR of 212/154 ≈ 1.4. Beyond this point, OBR
exhibits a graceful loss of accuracy; FCR becomes numerically unstable.

R = 25 R = 24 R = 23 R = 16 R = 15 R = 14 R = 10 R = 5

OBR 2.32e-14 4.49e-14 2.15e-13 4.52e-10 4.14e-05 5.13e-04 1.16e-03 2.45e-03

FCR 2.32e-14 3.63e-07 1.67e-06 8.60e-04 1.16e-03 1.69e-03 5.74e-03 1.09e-02

Table: L1 errors in the OBR and FCR remap of a linear density function on the 64×64 smooth
nonorthogonal grid, for different values of the pseudo-time step 1/R. Errors smaller than 1e-8 are
highlighted. OBR fails to preserve linear densities at R = 15, while FCR fails at R = 24, resulting
in a pseudo-time step advantage for OBR of 24/15 ≈ 1.6.
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Computational Cost

Sine

# cells # remaps FCR(sec) OBR(sec) ratio

64×64 320 4.2 7.3 1.7
128×128 640 25.4 49.5 1.9
256×256 1280 176.5 390.6 2.2
512×512 2560 1812.5 3662.8 2.0

Peak

64×64 320 4.9 8.4 1.7
128×128 640 28.5 57.8 2.0
256×256 1280 183.8 418.6 2.3
512×512 2560 1832.9 4528.6 2.5

Shock

64×64 320 4.9 9.8 2.0
128×128 640 28.1 88.9 3.2
256×256 1280 184.7 438.6 2.4
512×512 2560 1794.1 3214.6 1.8

Table: Comparison of the computational costs of FCR and OBR, as measured by MatlabTM

wall-clock times on a single Intel Xeon X5680 3.33GHz processor, for density functions sine, peak
and shock and the tensor-product cyclic grid. The cost of OBR is proportional, up to a modest
constant, to the cost of FCR. The average cost ratio is only 2.1.

,
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Conclusions

OBR is monotone, conservative and linearity preserving — and
otherwise optimally accurate for a fixed norm and target flux.

Independent of dimension, cell topology and discretization.

OBR fully separates considerations of accuracy and monotonicity!

Permits additional physical bounds.

Extendible to compatible remap of systems.

Mathematically “clean” formulation: No flux limiting!

OBR is more robust and more accurate than local limiting (FCR).

In the transport setting, OBR permits larger time steps.

Surprise: Computational cost is comparable to local limiting (FCR).

However: FCR performs well for small cell displacements and is ...
a local (cell-wise) approximation of OBR → next talk!

Future: remap of systems, various objective functions (norms and
targets), remap of vector fields, use in ALE transport, use with nodal
flux discretizations (Scovazzi), comparison with iterated FCR.
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